Off Limits: Sulfate below the Sulfate-Methane Transition

نویسندگان

  • Benjamin Brunner
  • Gail L. Arnold
  • Hans Røy
  • Inigo A. Müller
  • Bo B. Jørgensen
چکیده

One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling—the simultaneous consumption and production of sulfate—has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment—thus the term cryptic—it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1–0.2mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate ( 34 δ S = 18.9‰, 18 δ O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site ( 34 δ S = 19.8‰, 18 δ O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool ( 18 δ O = 4.5–6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide—to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents

Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to a...

متن کامل

Anaerobic methane oxidation in Black Sea sediments

Anaerobic oxidation of methane (AOM) and sulfate reduction (SRR) were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using ra-5 diotracers in combination with pore water chemistry and stable...

متن کامل

Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan

Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated...

متن کامل

Correction: Stratified Community Responses to Methane and Sulfate Supplies in Mud Volcano Deposits: Insights from an In Vitro Experiment

Numerous studies on marine prokaryotic communities have postulated that a process of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) is the main methane sink in the world's oceans. AOM has also been reported in the deep biosphere. But the responses of the primary microbial players in eliciting changes in geochemical environments, specifically in methane and sulfate supp...

متن کامل

Analytical theory relating the depth of the sulfate‐methane transition to gas hydrate distribution and saturation

[1] We develop a theory that relates gas hydrate saturation in marine sediments to the depth of the sulfate‐ methane transition (SMT) zone below the seafloor using steady state, analytical expressions. These expressions are valid for systems in which all methane transported into the gas hydrate stability zone (GHSZ) comes from deeper external sources (i.e., advective systems). This advective co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016